Abstract

Defect formation during the ion implantation/annealing process in 4H-SiC epilayers is investigated by synchrotron reflection X-ray topography. The 4H-SiC epilayers are subjected to an activation annealing process after Aluminum ions being implanted in the epilayers. The formation modes of extended defects induced by the implantation/annealing process are classified into the migration of preexisting dislocations and the generation of new dislocations/stacking faults. The migration of preexisting basal plane dislocations (BPDs) takes place corresponding to the ion implantation interface or the epilayer/substrate interface. The generation of new dislocations/stacking faults is confirmed as the formation of Shockley faults near the surface of the epilayer and BPD half-loops in the epilayer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.