Abstract

AbstractRecently observations that high-dose Ge implantations into Si substrates caused the n-type carrier concentration to increase were attributed to residual structural defects after activation annealing [7,12]. However, co-implantation of an n-type impurity is another possibility. The origin of this excess donor concentration has been studied in this work. The possibilities of residual defects versus implantation of impurities have been investigated using two different implanters and materials analysis. Comparison of data from different implanters showed that the concentration of excess donors was sensitive to the implanter configuration. Furthermore, transmission electron microscopy (TEM), Rutherford backscattering channeling (RBS-C), and spreading resistance profiling (SRP) data showed that the excess donor effect was related to impurities rather than residual defects. Secondary-ion mass spectroscopy (SIMS) and SRP measurements confirmed that impurities such as 75As ions were present after implants. This impurity easily explains the excess donor concentration when 75Ge implants are performed into silicon wafers doped with phosphorous.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.