Abstract
In this study, we demonstrate a simple approach to developing mesoporous nanohybrids via a process of pre-loading of an anticancer drug (doxorubicin, DOX) into mesoporous silica nanoparticles (MSN), followed by assembly with a kind of naturally-derived polymer (gelatin, cleavable by matrix metalloproteinase 2 overexpressed by tumor). The gelatin shell is then in situ crosslinked by degradable N,N′-bis(acryloyl)cystamine (BAC) to form enzymatic and redox switchable nanogates on the mesoporous nanoparticles. The nanohybrids displayed pH/redox/enzymatic sensitivity in DOX release under conditions mimicking tumor microenvironments. The nanocarriers can be effectively taken up by A549 cells (a carcinomic human alveolar basal epithelial cell line), resulting in a high DOX intracellular accumulation and an improved anticancer cytotoxicity when compared with free DOX, suggesting their potential as a nanoplatform for therapeutic delivery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.