Abstract

In many anthropogenic activities, catechol as a widespread organic chemical could be released and also environmentally persistent free radicals (EPFRs) can be unintentionally formed. However, the underlying links between EPFRs and the role of catechol as an important precursor are not well understood. In this study, EPFR formation from catechol during heating was monitored online by electron paramagnetic resonance spectroscopy. It was found that catechol can produce significant amounts of EPFRs via thermochemical reactions. The EPFR species formed from catechol on metal oxides were oxygen-centered phenoxy and semiquinone radicals. Their half-lives were evaluated to be in the range of 113–909 h. The promotional effects of CaO and CuO on EPFR formation from catechol were stronger than that of Fe2O3. The promotional abilities and underlying mechanisms of various metal oxides in EPFR formation were clarified by X-ray photoelectron spectroscopy. Significant EPFR formation was observed during the cooling stage of a heating reaction system when CaO was used as the reaction medium. The obtained knowledge on the formation of EPFRs from catechol and the key factors involved will enable better control of the formation of EPFRs from anthropogenic activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call