Abstract
In this study, we present data showing that Cdc42-dependent lumen formation by endothelial cells (ECs) in three-dimensional (3D) collagen matrices involves coordinated signaling by PKCepsilon in conjunction with the Src-family kinases (SFKs) Src and Yes. Activated SFKs interact with Cdc42 in multiprotein signaling complexes that require PKCepsilon during this process. Src and Yes are differentially expressed during EC lumen formation and siRNA suppression of either kinase, but not Fyn or Lyn, results in significant inhibition of EC lumen formation. Concurrent with Cdc42 activation, PKCepsilon- and SFK-dependent signaling converge to activate p21-activated kinase (Pak)2 and Pak4 in steps that are also required for EC lumen formation. Pak2 and Pak4 further activate two Raf kinases, B-Raf and C-Raf, leading to ERK1 and ERK2 (ERK1/2) activation, which all seem to be necessary for EC lumen formation. This work reveals a multicomponent kinase signaling pathway downstream of integrin-matrix interactions and Cdc42 activation involving PKCepsilon, Src, Yes, Pak2, Pak4, B-Raf, C-Raf and ERK1/2 to control EC lumen formation in 3D collagen matrices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.