Abstract

Influence of the irradiation with 13.5 MeV 3He and 5 MeV 4He ions on the micro-structure and mechanical properties of LiF single crystals was studied. The depth profiles of nanoindentation, dislocation mobility, selective chemical etching and photoluminescence served for the characterization of damage. Strong ion-induced increase of hardness and decrease in dislocation mobility at the stage of track overlapping due to accumulation of dislocations and other extended defects was observed. At high fluences (1015 ions/cm2) the hardness saturates at about 3.5 GPa (twofold increase in comparison to a virgin crystal) thus confirming high efficiency of light projectiles in modifications of structure and properties. The effects of ion-induced increase of hardness and decrease of dislocation mobility are observed also beyond the ion range and possible mechanisms of such damage are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.