Abstract

This paper presents the results of research, development, and testing of magnetically insulated air diodes with replaceable graphite and stainless-steel tubular and coaxial cathodes of various configurations capable of generating directed bunches of runaway electrons. At the anode, the bunches have cross sections shaped as circles or rings with an outer diameter of 1-2cm. The durations of the bunches, which carry currents of a few to tens of amperes, range from tens of picoseconds to 100ps, and their charges range from tenths of a nanocoulomb to a few nanocoulombs. The kinetic energy of the bunch electrons at the peak of the current pulse is typically of the order of 150keV. The bunch parameters are set (and varied) by varying the amplitude and duration of the subnanosecond high-voltage pulse driving the diode; they depend on the cathode material and on the strength and profile of the applied external magnetic field. The bunches, retaining their cross-sectional structure, are brought out from the diode, along the field lines, through a thin foil or mesh anode into the open space with a quasi-uniform magnetic field between two Helmholtz coils. In this space, the samples to be irradiated with electrons, similarly to objects exposed to radiation in various experiments and technological applications, can be placed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.