Abstract

The formation of diphenyl nitroxide in diphenylamine inhibited, α,α′-azo-bis-isobutyronitrile initiated, autoxidations at 65° has been studied by electron spin resonance. Diphenylamine is oxidized to a diphenylamino radical which is then converted to the nitroxide by an oxygen atom transfer from a peroxy radical. The initial rates of conversion of diphenylamine to diphenyl nitroxide and the maximum nitroxide concentrations attained are generally greater for oxidations with tertiary peroxy radicals than for oxidations with primary or secondary peroxy radicals. The lower efficiency of nitroxide formation by primary and secondary peroxy radicals is attributed to a cage disproportionation between alkoxy radical and nitroxide which leads to the formation of a carbonyl compound and diphenyl hydroxylamine. This reaction cannot occur with tertiary radicals. The rate of formation of diphenyl nitroxide is greater for tertiary peroxy radicals which give stable tertiary alkoxy radicals. Nitroxide formation is inhibited by secondary, but not by tertiary, hydroperoxides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.