Abstract

[3H,35S]Dermatan/chondroitin sulfate glycosaminoglycans produced during culture of fibroblasts in medium containing varying concentrations of sulfate were tested for their susceptibility to chondroitin ABC lyase and chondroitin AC lyase. Chondroitin ABC lyase completely degraded [3H]hexosamine-labeled and [35S] sulfate-labeled dermatan/chondroitin sulfate to disaccharides. Chondroitin AC lyase treatment of the labeled glycosaminoglycans produced different results. With this enzyme, dermatan/chondroitin sulfate formed at high concentrations of sulfate yielded small glycosaminoglycans and larger oligosaccharides but almost no disaccharide. This indicated that the dermatan/chondroitin sulfate co-polymer contained mostly iduronic acid with only an occasional glucuronic acid. As the medium sulfate concentration was progressively lowered, there was a concomitant increase in the susceptibility to degradation by chondroitin AC lyase. Thus, the labeled glycosaminoglycans formed at the lowest concentration of sulfate yielded small oligosaccharides including substantial amounts of disaccharide. The smaller chondroitin AC lyase-resistant [3H,35S]dermatan/chondroitin sulfate oligosaccharides were analyzed by gel filtration. Results indicated that, in general, the iduronic acid-containing disaccharide residues present in the undersulfated [3H,35S]glycosaminoglycan were sulfated, whereas the glucuronic acid-containing disaccharide residues were non-sulfated. This work confirms earlier reports that there is a relationship between epimerization and sulfation. Moreover, it demonstrates that medium sulfate concentration is critical in determining the proportions of dermatan to chondroitin (iduronic/glucuronic acid) produced by cultured cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.