Abstract

Dense, vitric, dacitic pyroclasts (dacite lithics) from the 1991 preclimactic explosions of Mt. Pinatubo were analyzed for their vesicular and crystal textures and dissolved H2O and CO2 contents. Micron-scale heterogeneities in groundmass glass volatile contents (0.9 wt% differences in H2O within 500 μm) are observed and argue that parts of the dacite lithics equilibrated at different depths before finally being constructed. Greater vesicularities and larger and greater number densities of vesicles are observed in groundmass glass around phenocrysts compared to groundmass glass away from phenocrysts, similar to textures produced in experiments that sintered bimodal distributions of particles. Furthermore, increasingly greater proportions of stretched and distorted vesicles are observed in lithics from the later explosions, which parallels the increasingly shorter reposes between explosions. Finally, micron-sized crystal fragments are ubiquitous in groundmass glass of all dacite lithics. The textures, together with the variable volatile contents, lead us to propose a model that the dacite lithics formed by rapid and repetitive sintering of ash particles derived from a variety of depths on the conduit walls above the fragmentation level. We speculate that sintering of conduit material produced impermeable layers that retarded gas flow through the conduit, causing pressure to build until the cap failed and the next explosion occurred.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.