Abstract

In this paper, we use large area light pulse induced melting of deposited thin silicon films on oxidised silicon wafers to prepare coarse grained dendritic crystal structures. The results show that the addition of carbon prevents the agglomeration of the molten silicon films and largely influences the crystallisation process. The low solubility of carbon in liquid silicon and its effect on the silicon melting temperature induces a distinctive lateral dendritic grain growth. XTEM, SEM, AFM and ToF-SIMS investigations have been performed to study the crystallisation process and to characterise the resulting film structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.