Abstract

We predict feasibility of the photoassociative formation of Sr_2 molecules in arbitrary vibrational levels of the electronic ground state based on state-of-the-art ab initio calculations. Key is the strong spin-orbit interaction between the c^3\Pi_u, A^1\Sigma_u^+ and B^1\Sigma_u^+ states. It creates not only an effective dipole moment allowing free-to-bound transitions near the ^1S + ^3P_1 intercombination line but also facilitates bound-to-bound transitions via resonantly coupled excited state rovibrational levels to deeply bound rovibrational levels of the ground X^1\Sigma_g^+ potential, with v" as low as v"=6. The spin-orbit interaction is responsible for both optical pathways. Therefore, those excited state levels that have the largest bound-to-bound transition moments to deeply bound ground state levels also exhibit a sufficient photoassociation probability, comparable to that of the lowest weakly bound excited state level previously observed by Zelevinsky et al. [Phys. Rev. Lett. 96, 203201 (2006)]. Our study paves the way for an efficient photoassociative production of Sr_2 molecules in ground state levels suitable for experiments testing the electron-to-proton mass ratio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call