Abstract

The nonlinear dynamics of filamentation instability and magnetic field in a current-carrying plasma is investigated in the presence of quantum effects using the quantum hydrodynamic model. A new nonlinear partial differential equation is obtained for the spatiotemporal evolution of the magnetic field in the diffusion regime. This equation is solved by applying the Adomian decomposition method, and then the profiles of magnetic field and electron density are plotted. It is shown that the saturation time of filamentation instability increases and, consequently, the instability growth rate and the magnetic field amplitude decrease in the presence of quantum effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call