Abstract
Controllable polymer micropatterns, served as indispensable function structures, are extensively required in many micro/nano scientific areas and engineering applications. Exploring advanced methods of fabricating micropatterns is always a research hotspot. In this article, we introduce a novel method of patterning polymer by the electro-dewetting induced by corona discharge. For the first time, it is observed experimentally that liquid polymer on conductive/non-conductive patterned substrates, spontaneously converges from non-conductive areas to conductive areas under the action of ion wind. Taking advantage of such a flow phenomenon, controllable polymer micropatterns including microbump arrays and microwell arrays are fabricated successfully. Their sizes range from hundreds of microns to millimeters. Micropattern surfaces present an ultra-smooth characteristic, with roughness in the nanometer range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.