Abstract

We present evolutionary calculations for 74 close binaries systems with initial primary masses in the range 12...25 M_sun, and initial secondary masses between 6 and 24 M_sun. The initial periods were chosen such that mass overflow starts during the core hydrogen burning phase of the primary (Case A), or shortly thereafter (Case B). We assume conservative evolution for contact-free systems, i.e., no mass or angular momentum loss from those system except due to stellar winds. We investigate the borderline between contact-free evolution and contact, as a function of the initial system parameters. We also investigate the effect of the treatment of convection, and found it relevant for contact and supernova order in Case A systems, particularly for the highest considered masses. For Case B systems we find contact for initial periods above approximate 10 days and below. However, in that case (and for not too large periods) contact occurs only after the mass ratio has been reversed, due to the increased fraction of the donor's convective envelope. As most In all Cases we find contact for mass ratios below approximate 0.65. We derive the observable properties of our systems after the major mass transfer event, where the mass gainer is a main sequence or supergiant O or early B type star, and the mass loser is a helium star. We point out that the assumption of conservative evolution for contact-free systems could be tested by finding helium star companions to O stars.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.