Abstract

Oxidation of bulk samples of tungsten (923 K) and zirconium (773 and 873 K) by H2O/CO2 supercritical fluid (molar ratio [CO2]/[H2O] = 0.17–0.26) at a pressure of about 300 atm is investigated. Oxidation produces monoclinic WO3, monoclinic W19O55, monoclinic ZrO2, H2, CO, CH4, and carbon (on the surface of tungsten oxide). Differences in oxidation mechanisms for tungsten and zirconium are revealed. CO2 molecules take part in the oxidation of tungsten only after oxide formation in reaction with H2O. Zirconium is oxidized fully, and oxidation of tungsten terminates in the formation of the oxide layer at the metal surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call