Abstract

Colloidal 2D semiconductor nanosheets (NSs) are an interesting new class of materials due to their unique properties. However, synthesis of these NSs is challenging, and synthesis procedures for materials other than the well-known Pb- and Cd-chalcogenides are still underdeveloped. In this paper, we present a new approach to make copper indium sulfide (CIS) NSs and study their structural and optical properties. The CIS NSs form via self-organization and oriented attachment of 2.5 nm chalcopyrite CuInS2 nanocrystals (NCs), yielding triangular- and hexagonal-shaped NSs with a thickness of ∼3 nm and lateral dimensions ranging from 20 to 1000 nm. The self-organization is induced by fast cation extraction, leading to attractive dipolar interactions between the NCs. Primary amines play a crucial role in the formation of the CIS NSs, both by forming in situ the cation extracting agent, and by preventing the attachment of NCs to the top and bottom facets of the NSs. Moreover, DFT calculations reveal that the amines are essential to stabilize the covellite crystal structure of the product CIS NSs. The NSs are indium-deficient and the off-stoichiometry gives rise to a plasmon resonance in the NIR spectral window.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.