Abstract

Abstract In order to define the ability of magnetic elements M = Mn, Fe, Co to stabilise clathrate structures, alloys of the Ba – M – Ge system were investigated in the as-cast state and after annealing at 700°C and 800°C by means of X-ray powder diffraction, light optical and electron-probe microanalysis. Temperatures of phase transformations were derived from differential thermal analysis. Results are summarised in (i) isothermal sections at 700°C and 800°C, (ii) solidus and liquidus surfaces covering the region of existence for both clathrate phases in these systems. Invariant reactions during crystallisation are presented in form of Schultz – Scheil diagrams. In all three cases only limited solubility of the M element was found for clathrate IX (Ba6Ge25) i. e. the Ge-framework in the crystal structure of Ba6M x Ge25 – x dissolves 0.6 atom of Mn, and about 1 atom of Fe and Co per unit cell. The maximum solubility of iron in clathrate type I (Ba8Ge46 – x ) was found to be less than 0.5 Fe atom per unit cell, and clathrates with Mn and Co contain up to 1.0 and 2.5 atoms in the unit cell, respectively. Whilst Fe does not decrease the formation temperature of the clathrate phase, Mn and Co decrease it from 770°C (for binary Ba8Ge43) to 766°C and 749°C, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.