Abstract

ObjectiveTo avoid risk of infections associated with dental implants, thermal oxidation processes for practical dental Ti alloys were studied for both high bonding strength and antibacterial properties in visible light. MethodsTwo-step thermal oxidation, comprising carburization (first step of treatment: in Ar-1%CO gas) and subsequent oxidation (second step of treatment: in air), was conducted on commercially pure (CP) Ti, Ti-6Al-4V (Ti64), and Ti-6Al-7Nb (Ti67) alloys to form TiO2 layers. Their bonding strengths and antibacterial properties against Escherichia coli (E. coli) in visible light (λ ≥ 400 nm) were evaluated. ResultsTiO2 layers formed on each metal were composed of anatase and/or rutile. Anatase fraction and carbon concentration in the layers decreased with increasing temperature in the second step of treatment. Antibacterial properties of the TiO2 layers were dependent on the temperature in the second step of treatment. An approximate antibacterial activity value of 2 (killing ∼99% bacteria) was obtained when the temperatures in the second step of treatment were 673 and 773 K for CP Ti, 773 K for Ti64, and 773 and 873 K for Ti67. It was found that the TiO2 layer must contain carbon and be anatase-rich to exhibit excellent antibacterial properties. Bonding strength between the substrate and TiO2 layers formed at 773 K in the second step of treatment exceeded 80 MPa and was independent of substrate type. SignificanceTiO2 layers, possessing both high bonding strength and excellent antibacterial properties, were successfully formed on practical dental Ti alloys via two-step thermal oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call