Abstract

Properties of ethylene–propylene copolymer (EPM) are determined by ethylene/propylene ratio and degree of block and random sequences. EPM was pyrolyzed and the pyrolysis products were analyzed using gas chromatography/mass spectrometry (GC/MS) to examine pyrolysis products formed from the ethylene–propylene heterosequences. Pyrolysis products formed from EPM were compared with those formed from polyethylene (PE) and polypropylene (PP) to determine the pyrolysis products formed from ethylene–propylene heterosequences of EPM. Principal pyrolysis products formed from ethylene–propylene heterosequences were 3-methyl-1-hexene, 4-methyl-1-hexene, 2-methyl-1-hexene, and 2-heptene. Order of the relative intensity of the pyrolysis products was 2-methyl-1-hexene > 4-methyl-1-hexene > 3-methyl-1-hexene > 2-heptene. The relative abundances of the pyrolysis products decreased as the pyrolysis temperature increased. Relative abundances of the specific pyrolysis products formed from ethylene–propylene heterosequences may be used for determination of the relative degree of random sequences of EPM as well as ethylene–propylene–diene terpolymer (EPDM).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.