Abstract

As demonstrated in previous works, implantation with a MeV ion microbeam through masks with graded thickness allows the formation of conductive micro-channels in diamond which are embedded in the insulating matrix at controllable depths [P. Olivero et al., Diamond Relat. Mater. 18 (5–8), 870–876 (2009)]. In the present work we report about the systematic electrical characterization of such micro-channels as a function of several implantation conditions, namely: ion species and energy, implantation fluence. The current–voltage ( IV) characteristics of the buried channels were measured at room temperature with a two point probe station. Significant parameters such as the sheet resistance and the characteristic exponent ( α) of the IV power-law trend were expressed as a function of damage density, with satisfactory compatibility between the results obtained in different implantation conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.