Abstract

It is an important issue that exposed active nitrogen atoms (e.g., edge or amino N atoms) in graphitic carbon nitride (g-C3 N4 ) could participate in ammonia (NH3 ) synthesis during the photocatalytic nitrogen reduction reaction (NRR). Herein, the experimental results in this work demonstrate that the exposed active N atoms in g-C3 N4 nanosheets can indeed be hydrogenated and contribute to NH3 synthesis during the visible-light photocatalytic NRR. However, these exposed N atoms can be firmly stabilized through forming BNC coordination by means of B-doping in g-C3 N4 nanosheets (BCN) with a B-doping content of 13.8 wt%. Moreover, the formed BNC coordination in g-C3 N4 not only effectively enhances the visible-light harvesting and suppresses the recombination of photogenerated carriers in g-C3 N4 , but also acts as the catalytic active site for N2 adsorption, activation, and hydrogenation. Consequently, the as-synthesized BCN exhibits high visible-light-driven photocatalytic NRR activity, affording an NH3 yield rate of 313.9 µmol g-1 h-1 , nearly 10 times of that for pristine g-C3 N4 . This work would be helpful for designing and developing high-efficiency metal-free NRR catalysts for visible-light-driven photocatalytic NH3 synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.