Abstract

Alcohols and nitriles not only play an important role as templates for synthesis of larger molecules in the interstellar medium and planetary atmospheres, but they can also be regarded as precursors for biomolecules. Alcohols can form carbohydrates through reaction with HCO and nitriles can be hydrolysed to amino acids in aqueous solutions, which is the final step of the well-known Strecker synthesis. Therefore the question of the pathways of formation of alcohols and nitriles and the efficiency and the product distribution of their subsequent degradation reactions in the above-mentioned astrophysical environments is of great interest. In both processes dissociative recombination reactions of protonated nitriles and alcohols may play a major role and are included in models of interstellar clouds and planetary atmospheres. However, the reaction rate coefficients and product branching ratios for the majority of these processes are so far still unknown, which adversely affects the quality of predictions of model calculations. In this Contribution, we therefore present branching ratios and rate constants of the dissociative recombination of protonated methanol (CH3OH2), as well as protonated acetonitrile (CH3CNH+), acrylonitrile (C2H3CNH+) and cyanoacetylene (HC3NH+). The impact of the obtained new data on model calculations of abundances of important interstellar molecules in dark clouds is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call