Abstract

The blocker of receptor-mediated calcium entry SK&F 96365 was used to evaluate the contribution of calcium influx to the formation of biologically active endothelial prostanoids and endothelium-derived relaxing factor (EDRF). SK&F 96365 inhibited histamine-stimulated calcium entry into human umbilical vein endothelial cells but not its discharge from intracellular stores as determined spectrofluorometrically by changes of intracellular calcium concentration in fura-2-loaded cells. Concordantly, SK&F 96365 inhibited histamine-induced endothelial synthesis of 6-keto-prostaglandin F1 alpha and thromboxane B2 in a dose-dependent manner. To assess the functional significance of endothelial formation of prostacyclin and EDRF to platelets, the cAMP- and cGMP-dependent phosphorylation of two platelet proteins, rap1B and a 50-kD vasodilator-stimulated phosphoprotein (VASP), was analyzed in coincubation experiments of endothelial cells with platelets. Autacoids released by histamine-stimulated endothelial cells caused the phosphorylation of rap1B and VASP in platelets, which was only partly inhibited by either indomethacin or NG-monomethyl-L-arginine but was almost completely suppressed by SK&F 96365. The concomitant endothelial release of thromboxane A2 had no effect on protein kinase C- and calcium-dependent phosphorylation of platelet proteins. The results demonstrate that blockade of receptor-mediated calcium entry by SK&F 96365 markedly reduced the release of biologically active prostacyclin and EDRF from endothelial cells. Thus, calcium influx but not calcium release from intracellular stores plays a critical role in the receptor-stimulated formation and liberation of prostacyclin and EDRF in endothelial cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.