Abstract

Au-Ag alloy nanoparticles were formed into amorphous silicon by sequential ion implantation of Au and Ag. Monocrystalline Si was amorphized at the initial moment of implantation with 1 × 1016 ions/cm2 gold ions, and then different silver fluences were applied in the range of 1 × 1016–1 × 1017 ions/cm2. After implantations the samples were investigated by means of Rutherford backscattering spectrometry and transmission electron microscopy. The nanoparticles were found to be formed at surface and sub-surface regions of the Si substrate, at depths corresponding to the maximum distribution of Au and Ag ions. The particles are crystalline in nature with sizes from 2 nm to 30 nm in diameter, increasing with silver ion fluence. Although the lattice constants of gold and silver are too close to be distinguished by measuring the characteristic interplanar spacings, imaging in scanning transmission mode confirms the formation of Au-Ag bimetallic nanoparticles, presenting a solid-solution alloy of gold and silver.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.