Abstract

We report the first formation of arrays of GaN nanorods inside the nanoscale channels of mesoporous silica SBA-15. GaCl3 dissolved in toluene was incorporated into the methyl group-functionalized SBA-15 powder. The pore surfaces functionalized with methyl groups should facilitate the impregnation with GaCl3. Formation of GaN nanorod arrays within SBA-15 was carried out by heating the powder to 700 degrees C for 3 h under nitrogen atmosphere, followed by ammonolysis at 900 degrees C for 5 h. epsilon-Ga2O3, an unusual phase for Ga2O3, formed after the first thermal process and was converted into wurtzite GaN during ammonolysis. The final products have been characterized by FT-IR spectra, powder XRD patterns, TEM images and SAED patterns, EDS analysis, and nitrogen adsorption-desorption isotherm measurements to confirm the presence of GaN nanostructures. The nanorods are 6-7.5 nm in diameter, and can be a few hundreds of a nanometer in length to exhibit nanowire structure. Free-standing GaN nanorod arrays were revealed upon removal of the silica framework with HF solution. Optical characterization of the isolated GaN nanorod arrays shows a strong and sharp near band-edge emission at 375 nm, and two phonon-assisted donor-acceptor peaks at 395 and 415 nm. A broad but weak emission in the region of 335-360 nm due to the quantum confinement effect of short nanorods was observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.