Abstract

Tetramers of the mammalian water channel aquaporin-4 (AQP4) assemble into square arrays and mediate bidirectional water transport across the blood–brain interface. The aqp4 gene expresses two splicing isoforms. Only the shorter AQP4M23 isoform assembles into square arrays, while the longer AQP4M1 isoform interferes with array formation, presumably due to the additional 22 N-terminal residues. To understand why the N-terminus of AQP4M1 interferes with array formation, we constructed a series of N-terminal deletion mutants and examined their ability to form square arrays in Chinese hamster ovary (CHO) cells using SDS-digested freeze fracture replica labeling. Mutants with deletions of less than seventeen N-terminal residues did not form square arrays and showed dispersed immunogold labels against AQP4 molecules, whereas more deletions led to the formation of square arrays labeled with immunogolds. Furthermore, mutagenic substitution of the two cysteine residues at the position 13 and 17 in the N-terminus of AQP4M1 also resulted in the square array formation. Biochemical analysis and metabolic labeling of transfected CHO cells revealed that the two N-terminal cysteines of AQP4M1 are palmitoylated. These results suggest that palmitoylation of the N-terminal cysteines is the reason for the inability of AQP4M1 to form square arrays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.