Abstract

A pathological hallmark of Alzheimer's disease is the deposition of amyloid fibrils in the brain. The principal component of the amyloid fibril is beta/A4 protein, which is derived from a large membrane-bound glycoprotein, Alzheimer amyloid protein precursor (APP). Although the deposition of amyloid is thought to result from the aberrant processing of APP, the detailed molecular mechanisms of amyloidogenesis remain unclear. A C-terminal fragment of APP which spans the beta/A4 and cytoplasmic domains has a tendency to self-aggregate. In an attempt to establish a cultured-cell model for amyloid fibril formation, we have transfected COS-1 cells with complementary DNA encoding the C-terminal 100 residues of APP. In the perinuclear regions of a small population of DNA-transfected cells, we observed inclusion-like deposits which showed a strong immunohistochemical reaction towards an anti-C-terminal APP antibody or an anti-beta/A4 amyloid core-specific antibody. Electron microscope observations of the inclusion-carrying cells revealed an accumulation of amyloid-like fibrils of 8-22 nm diameter near and on the nuclear membrane. The fibrils showed a beaded or helical structure, and reacted positively with the anti-C-terminus antibody by immunoelectron microscopy. These results suggest that the formation of amyloid fibrils is an inherent characteristic of the C-terminal peptide of APP. The present system provides a suitable model for the molecular dissection of the process of brain amyloidogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.