Abstract
Water molecules can bind to zwitterionic polymers, such as carboxybetaine and sulfobetaine, forming strong hydration layers along the polymer chains. Such hydration layers act as a barrier to impede the attachment of marine fouling organisms; therefore, zwitterionic polymer coatings have been of considerable interest as marine antifouling coatings. However, recent studies have shown that severe adsorption of marine sediments occurs on zwitterionic-polymer-coated surfaces, resulting in the degradation of their marine antifouling performance. Therefore, a novel approach for forming amphiphilic zwitterionic polymers using zwitterionic and hydrophobic monomers is being investigated to simultaneously inhibit both sediment adsorption and marine fouling. In this study, amphiphilic zwitterionic thin polymer brushes composed of sulfobetaine methacrylate (SBMA) and trifluoroethyl methacrylate (TFEMA) were synthesized on Si/SiO2 surfaces via surface-initiated atom transfer radical polymerization. For this, a facile metal-ion-mediated method was developed for immobilizing polymerization initiators on solid substrates to subsequently form poly(SBMA-co-TFEMA) brushes on the initiator-coated substrate surface. Poly(SBMA-co-TFEMA) brushes with various SBMA/TFEMA ratios were prepared to determine the composition at which both marine diatom adhesion and sediment adsorption can be prevented effectively. The results indicate that poly(SBMA-co-TFEMA) brushes prepared with an SBMA/TFEMA ratio of 3:7 effectively inhibit both sediment adsorption and marine diatom adhesion, thereby exhibiting balanced marine antifouling properties. Thus, the findings of this study provide important insights into the design of amphiphilic marine antifouling materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.