Abstract
The fungal hydrophobins are small proteins that are able to self-assemble spontaneouslyinto amphipathic monolayers at hydrophobic:hydrophilic interfaces. These protein monolayers can reverse the wettability of a surface, making them suitable for increasing the biocompatibility of many hydrophobic nanomaterials. One subgroup of this family, the class I hydrophobins, forms monolayers that are composed of extremely robust amyloid-like fibrils, called rodlets. Here, we describe the protocols for the production and purification of recombinant hydrophobins and oxidative refolding to a biologically active, soluble, monomeric form. We describe methods to trigger the self-assembly into the fibrillar rodlet state and techniques to characterize the physicochemical properties of the polymeric forms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.