Abstract

Mechanical alloying was used to synthesize NixZr1−x alloys from mixtures of intermetallic compound powders, and also from mixtures of intermetallic compound powders and pure elemental powders. The mechanically alloyed powders were amorphous in the range 0.24 ⩽ x ⩽ 0.85. This range is larger than amorphous alloys produced by the melt-spinning technique and mechanical alloying of elemental crystalline powders. Two-phase mixtures of the amorphous phase and the corresponding crystalline terminal solid solution were formed in the range 0.10 ⩽ x ⩽ 0.22, and x=0.90. It is found that the morphological development during mechanical alloying of these powders is different from mechanical alloying using only pure ductile crystalline elemental powders. The thermal stability has been investigated. The enthalpy and activation energy of crystallization for Ni-Zr amorphous powders prepared by mechanical alloying are lower than those for melt-spun samples of the same composition. The crystallization temperature of the mechanically alloyed Ni-Zr amorphous powders is higher than that of meltspun samples in the composition range Ni20Zr80 to Ni33Zr67 and Ni40Zr60 to Ni60Zr40. The presence of tiny crystallites as nucleation centres and high oxygen levels in the mechanically alloyed amorphous alloys might be responsible for the differences in crystallization behaviour. A new crystalline metastable phase was observed during crystallization studies of Ni24Zr76 amorphous powder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.