Abstract

Binary, non-equilibrium Al-29at%Nb, Al-44at%Ta, Al-19at%Ti, Al-25at%Ti and Al-32at%Zr alloys were prepared by magnetron sputtering and subsequently anodized at high Faradaic efficiency to grow barrier-type anodic films. Examination in the transmission electron microscope revealed amorphous anodic films of relatively uniform compositions across the film thicknesses, except for a layer of relatively pure alumina, of about 5% of the film thickness, present at the film/electrolyte interface of the Al-Ta alloy. The film compositions, from Rutherford backscattering spectroscopy, indicate that the alloy constituents are oxidized in their alloy proportions to form films comprising intimately mixed units of the various oxides, namely alumina, niobia, titania, tantala and zirconia. The films grow by co-operative transport of metal and oxygen ions under the electric field with formation of film material by both migration of metal ions outwards and of oxygen, and possibly hydroxyl, ions inwards. The average migration rates of Al 3+, Nb 5+, Ti 4+ and Zr 4+ ions are similar, to within 10%, but Ta 5+ ions migrate more slowly than Al 3+ ions. The results of the study show that a wide range of compositions of amorphous oxide films can be readily formed by anodic oxidation of appropriate alloys, including compositions containing units of normally crystalline anodic oxides, namely TiO 2 and ZrO 2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call