Abstract

This study investigated the formative process of alginate microspheres produced using an emulsification technique. The alginate microspheres were produced by cross-linking alginate globules dispersed in a continuous organic phase using various calcium salts: calcium chloride, calcium acetate, calcium lactate and calcium gluconate. The size, shape, drug content and Ca2+ content of the microspheres were evaluated. The tack, viscosity and pH of the calcium salt solution and percentage of Ca2+ partitioned into the organic phase were determined. Microscopic examination of the test emulsion at various stages of the emulsification process was also carried out. The propensity of cross-linking reaction was found to be dependent on successful collision between alginate and calcium salt globules. Examination of the characteristics of microspheres indicated that the formed microsphere was a resultant product of alginate globule clustering. The growth propensity of microspheres was promoted by the higher rate and extent of cross-linkage which was governed by the pH, tack and/or Ca2+ content of the cross-linking solution, as well as the dissociation constant and diffusivity of the calcium salt. Overall, the amount of free Ca2+ cross-linked with alginate in the formed microspheres was in the following order: calcium acetate > calcium chloride + calcium acetate > calcium chloride + calcium gluconate; calcium chloride + calcium lactate > calcium chloride. In microencapsulation by emulsification, the mean size of the microspheres produced can be modified by varying the tack, pH and Ca2+ content of the cross-linking solution and through the use of a combination of calcium salts. The shape of the microspheres produced was, nonetheless, unaffected by the physicochemical properties of the cross-linking solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.