Abstract
Here we show, for the first time, the in vitro formation of filamentous aggregates of phosphorylated tau protein in SH-SY5Y human neuroblastoma cells. The formation of such aberrant aggregates, similar to those occurring in vivo in Alzheimer's disease and other tauopathies, requires okadaic acid, a phosphatase inhibitor, to increase the level of phosphorylated tau, and hydroxynonenal, a product of oxidative stress that selectively adducts and modifies phosphorylated tau. Our findings suggest that both phosphorylation and oxidative modification are required for tau filament formation. Importantly, the in vitro formation of intracellular tau aggregates could be used as a model of tau polymerization and facilitate the development of novel therapeutic approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.