Abstract

Motivated by the recent experimental discovery of superconductivity in the infinite-layer nickelate Nd0.8Sr0.2NiO2 [Li et al., Nature 572, 624 (2019)], we study how the correlated Ni 3dx2-y2 electrons in the NiO2 layer interact with the electrons in the Nd layer. We show that three orbitals are necessary to represent the electronic structure around the Fermi level: Ni 3dx2-y2, Nd 5d3z2-r2, and a bonding orbital made from an interstitial s orbital in the Nd layer and the Nd 5dxy orbital. By constructing a three-orbital model for these states, we find that the hybridization between the Ni 3dx2-y2 state and the states in the Nd layer is tiny. We also find that the metallic screening by the Nd layer is not so effective in that it reduces the Hubbard U between the Ni 3dx2-y2 electrons just by 10--20 %. On the other hand, the electron-phonon coupling is not strong enough to mediate superconductivity of Tc ~ 10 K. These results indicate that NdNiO2 hosts an almost isolated correlated 3dx2-y2 orbital system. We further study the possibility of realizing a more ideal single-orbital system in the Mott-Hubbard regime. We find that the Fermi pockets formed by the Nd-layer states dramatically shrink when the hybridization between the interstitial s state and Nd 5dxy state becomes small. By an extensive materials search, we find that the Fermi pockets almost disappear in NaNd2NiO4 and NaCa2NiO3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.