Abstract

Comparative studies of the effect of the physicochemical characteristics of a support (aluminum oxide) on the formation of a supported Co catalyst and its activity in the pyrolysis of alkanes (propane-butane) were performed. The effect of the crystalline modification of alumina on the yield of catalytic filamentous carbon (CFC) ((g CFC)/(g Co)) was studied. The surface morphologies of Co-containing catalysts and synthesized carbon deposits were studied by scanning electron microscopy. It was found that carbon deposits with a well-defined nanofiber structure were synthesized by the pyrolysis of a propane-butane mixture in the presence of hydrogen at 600°C on supported Co catalysts prepared by homogeneous precipitation on macroporous corundum (α-Al2O3). The yield of CFC was no higher than 4 (g CFC)/(g Co). On the Co catalyst prepared by homogeneous precipitation on mesoporous Al2O3, the intense carbonization of the initial support; the formation of cobalt aluminates; and, as a consequence, the deactivation of Co0 as a catalyst of FC synthesis occurred. The dependence of the yield of CFC on the preheating temperature (from 200 to 800°C) of Co catalysts before pyrolysis was studied. It was found that, as the preheating temperature of supported Co/Al2O3 catalysts was increased, the amount of synthesized carbon, including CFC, decreased because of Co0 deactivation due to the interaction with the support and coke formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call