Abstract
The metallurgical industry of Ukraine in wartime faced significant difficulties in its functioning. However, at the moment there is a gradual recovery of the industry. It should be noted that steel production is an extremely energy-intensive process, accounting for the second largest share of energy consumption and the largest share of CO2 emissions. Therefore, in order to control the growth of energy consumption and CO2 emissions in this industry, as well as to be competitive in the international market, Ukrainian metallurgical enterprises should not only expect maximum assistance from the government bodies and international partners in matters of logistics and sales markets, but also focus on energy efficiency issues and decarbonization of their production. While improving the energy efficiency of steel production through the introduction of standard energy efficiency measures will help the industry, there is a need to further develop and deploy a wide portfolio of breakthrough solutions to improve processes and infrastructure. This will achieve long-term deep reductions in CO2 emissions. For this activity to be purposeful rather than chaotic, individual enterprises and the industry must develop a strategy to increase energy efficiency and decarbonize their production. This article is devoted to one of the possible approaches to solving this issue. Along with a description of the mathematical model for the formation of an optimal strategy for improving energy efficiency and decarbonization of metallurgical industries, the article presents the structure of energy costs, as well as the list of significant energy usages at metallurgical enterprises. In addition, a separate place in the article is given to the issue of building an energy baseline, taking into account the provisions of modern international standards in the field of energy management system (ISO 50001, ISO 50006, ISO 50047), as well as the main factors affecting energy consumption. The paper also presents the list of typical measures for improving the energy efficiency of metallurgical enterprises for each group of significant energy usages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.