Abstract

Concern is growing about the potential impact of human exposure to carbonaceous nanomaterials (such as fullerenes) in the environment. A valid biological study of how native biomolecules interact with nanomaterials at the molecular level in physiological conditions requires the preservation of their physicochemical properties, yet most investigations rely on the use of modified fullerene conjugates or aggregates. We report the formation of a stable, water-soluble, well-defined complex between a single molecule of pristine C(60)-fullerene and a native protein, bovine serum albumin protein (BSA), with the normal three-dimensional structure of BSA preserved. The ability to produce a pristine C(60)-fullerene-BSA hybrid at a physiological pH range lays a solid foundation for studying carbonaceous materials, biodelivery systems, and transport mechanisms and for characterizing the potential effects of nanomaterials on wildlife and human health, both in vitro and in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.