Abstract

ABSTRACTPoly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is the most popular anode buffer coated on indium tin oxide. It is thought to improve the inorganic–organic contact, but little is known about its role in organic–organic contact. This study addresses the latter issue by examining how the PEDOT:PSS layer affects the crystallization process of the neighboring layer composed of p‐type organic semiconductors in an organic photovoltaic device. Low landing voltage scanning electron microscopic analysis of crystals and aggregates of two donor compounds, tetrabenzoporphyrin (BP) and poly(3‐hexylthiophene) (P3HT), showed that PEDOT:PSS effectively nucleates the crystallization or aggregation of the donor material on its surface to form a uniformly thick film of polycrystalline BP or aggregated P3HT molecules. By contrast, a graphitic surface cannot induce structural order of the donor molecules on it. This result implies that pinning of the donor molecules to the acidic PEDOT:PSS surface promotes the heterogeneous nucleation at the organic–organic interface. © 2014 Wiley Periodicals, Inc. J. Polym. Sci. Part B: Polym. Phys. 2014, 52, 833–841

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.