Abstract

As a new approach for current-perpendicular-to-plane giant magnetoresistive (CPP-GMR) spin-valve films, we have proposed a new nanostructure to cause mesoscopic phenomena. For this purpose, we have successfully formed a nanobarrel structure composed of Cu granular-like shape surrounded by Al 2O 3 insulator in which Cu nanoconducting channel punches through the Al 2O 3 insulator both at the top and at the bottom. This nanobarrel structure was confirmed by high-resolution transmission electron microscope (HR-TEM) analysis. Both the resistance–voltage characteristics and the resistance–temperature characteristics showed the metallic conductance property, which is in good agreement with the nanostructure identified by HR-TEM analysis. The nanobarrel structure offers features compatible with both nano-ordered electron-confined structure by insulator and low resistance with metallic conductance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.