Abstract

Eukaryotic genomes contain a large number of pyrimidine-purine rich regions and such regions can assume varied DNA conformations, including triple-stranded structures. These structures have fascinated scientists because of their considerable therapeutic applications. These structures have also profound implications in the field of nanotechnology as they can be used to develop DNA-based nanostructures and materials. Therefore, for any application, it is important to understand the formation of triplex structures, both in quantitative and qualitative terms. A combination of gel electrophoresis, UV-thermal denaturation and circular dichroism (CD) spectroscopy was used to investigate the formation of inter- as well as intramolecular triplex, in pyrimidine motif at BOLF1 gene of human herpesvirus 4 (HH4) genome. This gene codes for inner tegument protein, which plays crucial roles in viral replication. The said oligopurine•oligopyrimidine duplex was targeted via a designed triple helix forming oligopyrimidine nucleotide (TFO) in intermolecular as well as intramolecular fashion. Our studies revealed that intramolecular triplex formation takes place at acidic as well as at neutral pH; whereas low pH is required for its intermolecular version. This comparative study between inter- and intramolecular triplex allowed us to demonstrate that intramolecular structure is more stable to its intermolecular counterpart. Numerous models for mono-, bi- and trimolecular structures adopted by these DNA sequences have been suggested. This report adds to our existing knowledge about DNA triple helical structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.