Abstract

High-energy (E>0.2 MeV) charge-exchange diagnostics allow the determination of the distribution function of fast atoms produced via the neutralization of hydrogen isotope ions by target hydrogen-like impurity ions. To derive the distribution function from the experimental data requires knowledge of the composition and spatial distribution of the target ions in a tokamak plasma. A charge-exchange target forms as a result of the interaction between the main impurity nuclei and the heating neutral beams. In different devices, the heating beams are arranged in different ways with respect to the diagnostics; hence, in order to accurately estimate the contribution of the secondary ions to the detected signal, it is necessary to calculate their trajectories for every particular case. A model is proposed that takes into account elementary processes resulting in the ionization equilibrium of the ions of different impurities with allowance for ion motion in a specific tokamak configuration. As an example, the model is applied to the plasma of the JT-60U tokamak. Mechanisms for the formation of charge-exchange atomic flows in various energy ranges are considered. The relative contributions of different heating injectors to the charge-exchange flow are estimated. Based on the calculated results, a method is proposed for local measurements of the ion distribution function with the help of a stationary analyzer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call