Abstract
Psoralen plus ultraviolet A (PUVA) and narrowband ultraviolet B (UVB) are widely used in skin disease phototherapy. Recently, the efficacy of UVB therapy has been greatly improved by narrowband UVB, compared to conventional broadband UVB. The objectives of the current study were to evaluate the influence of UVB-induced and PUVA-induced oxidative stress on cultured keratinocytes. We analyzed 8-hydroxy-2'-deoxyguanosine (8-OH-dG) in human keratinocytes (HaCaT cell line) using a high-performance liquid chromatography system equipped with an electrochemical detector. Non-irradiated human keratinocytes contained a baseline of 1.48 +/- 0.22 (mean +/- SD) 8-OH-dG per 10(6) deoxyguanosine (dG) residues in cellular DNA, which increased linearly with higher doses of UVB. When their abilities to induce 8-OH-dG were compared to each other, based on the minimal erythemal and therapeutically used doses, by irradiating them with broadband UVB at 100 mJ/cm(2), the amount of 8-OH-dG increased to 3.42 +/- 0.46 residues per 10(6) dG, while a narrowband UVB treatment at 1000 mJ/cm(2), with biological effects comparable to those elicited by 100 mJ/cm(2) broadband UVB, increased it to 2.06 +/- 0.31 residues per 10(6) dG. PUVA treatment, with 100 ng/mL 8-methoxypsoralen and 5000 mJ/cm(2) UVA, increased the 8-OH-dG level to 4.52 +/- 0.42 residues per 10(6) dG. When HaCaT cells treated with 2000 mJ/cm(2) narrowband UVB were cultured and the amount of 8-OH-dG was monitored in the living cells, 65.6% of the residues were repaired 24 h after treatment. Our study provides a warning that widely used narrowband UVB and PUVA induce cellular oxidative DNA damage at the therapeutically used doses, although to a lesser degree than broadband UVB with the same clinically effective dose.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.