Abstract
Crossed molecular beam reactions of p-tolyl (C7H7) plus 1,3-butadiene (C4H6), p-tolyl (C7H7) plus 1,3-butadiene-d6 (C4D6), and p-tolyl-d7 (C7D7) plus 1,3-butadiene (C4H6) were carried out under single-collision conditions at collision energies of about 55 kJ mol(-1). 6-Methyl-1,4-dihydronaphthalene was identified as the major reaction product formed at fractions of about 94% with the monocyclic isomer (trans-1-p-tolyl-1,3-butadiene) contributing only about 6%. The reaction is initiated by barrierless addition of the p-tolyl radical to the terminal carbon atom of the 1,3-butadiene via a van der Waals complex. The collision complex isomerizes via cyclization to a bicyclic intermediate, which then ejects a hydrogen atom from the bridging carbon to form 6-methyl-1,4-dihydronaphthalene through a tight exit transition state located about 27 kJ mol(-1) above the separated products. This is the dominant channel under the present experimental conditions. Alternatively, the collision complex can also undergo hydrogen ejection to form trans-1-p-tolyl-1,3-butadiene; this is a minor contributor to the present experiment. The de facto barrierless formation of a methyl-substituted aromatic hydrocarbons by dehydrogenation via a single event represents an important step in the formation of polycyclic aromatic hydrocarbons (PAHs) and their partially hydrogenated analogues in combustion flames and the interstellar medium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.