Abstract

Binding constants (Ka’s) for the formation of inclusion complexes of α-cyclodextrin (α-CD) with cycloalkanols (c-CnOH; n=4–8) were determined by means of 1H and 13C NMR titration, under two different conditions: (i) only 1:1 host–guest inclusion complexes are formed when the guest is in excess; (ii) the formation of 2:1 inclusion complexes occurs only after that of 1:1 inclusion complexes, when the host is in excess. The results of this work showed that α-CD can include c-C4OH or c-C5OH only when the molar ratio is 1:1; larger ring-sized cycloalkanols such as c-C6OH, c-C7OH or c-C8OH can be included only when the molar ratio is 2:1. These findings, together with those obtained for the four derivatives of α-CD, per-6-O-methyl-α-CD, per-2-O-methyl-α-CD, per-3-O-methyl-α-CD, and per-2,6-di-O-methyl-α-CD, suggested that α-CD forms 2:1 inclusion complexes with c-C6OH, c-C7OH or c-C8OH in a tail-to-tail manner, in which the secondary hydroxy sides of the two CD molecules face each other. Two-dimensional ROESY measurements confirmed our results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call