Abstract
A new strategy is proposed here to formulate a bis(2-ethyl-1-hexyl)sulfosuccinate (AOT−) stabilized water-in-ionic liquid microemulsion without any additives. Replacing the inorganic counter ion Na+ by the organic 1-butyl-3-methylimidazolium ([Bmim]+) ion greatly improves the solubility of AOT− in hydrophobic 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([Bmim]Tf2N) (IL) and favors the formation of water-in-IL (W/IL) microdroplets. The existence of the W/IL microdroplets has been confirmed by dynamic light scattering, Fourier transform infrared absorption spectroscopy and ultraviolet–visible absorption spectroscopy. Also, presented for the first time are the effects of salts and alcohols on the microstructure and water solubilization capacity of the ternary H2O/[Bmim]AOT/[Bmim]Tf2N system. For inorganic salts, larger concentrations of the salt and higher charge density of the cation result in smaller microdroplet size and weak water solubilization capacity. For 1-hexanol, a high concentration of this alcohol results in small microdroplet size but high water solubilization capacity. Analyses indicate that the salts compress the electric double layers of W/IL microemulsions, decrease the size of the microdroplets and consequently reduce the water solubilization capacity; the alcohol, however, facilitates the aggregation of AOT−, increases the number of W/IL microdroplets, and therefore improves the water solubilization capacity of the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.