Abstract

Monochloropropanediol (MCPD) fatty acid esters are process contaminants generated during the deodorisation of edible oils. In particular, MCPD diesters are found in higher abundance in refined palm oil than other edible oils. In the present study, a series of model reactions mimicking palm oil deodorisation has been conducted with pure acylglycerols in the presence or absence of either organic or inorganic chlorine-containing compounds. Results showed that the bulk of MCPD diesters are formed above 200°C through the reaction of organochlorines with triacylglycerols (TAG). Additional experiments confirmed that this reaction can be initiated during palm oil deodorisation by hydrogen chloride (HCl) gas evolved through the thermal degradation of organochlorines present in the oil. Therein, the majority of the ultimately produced MCPD diesters are the result of HCl reacting with TAG, via protonation, followed by the elimination of a fatty acid residue. Two possible MCPD diester formation mechanisms are highlighted, both of which involve acyloxonium ion reactive intermediates. Investigations with pure TAG regio-isomers showed that MCPD ester formation is regioselective and the sn-1(3) position of the glycerol backbone is favoured.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.