Abstract

The evolution processes of double-layers have been studied in a series of laboratory experiments using a triple plasma device. It was found that the existence of virtual cathode type potential wells at the electron injection boundary was the dominant triggering mechanism. The rapid growth of the potential well led to collisionless ion trapping and the establishment of the necessary trapped ion population. For double layers with small potential drops, collisionless ion trapping actually induced ion–ion streaming instabilities and the formation of ion phase-space vortices. In this regime, the system often exhibited relaxation type oscillations which corresponded to the disruption and the recovery of the double layers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.