Abstract
A detailed mechanism, based on density functional theory calculations and simulation, is presented outlining the formation of the secondary building unit (SBU) of MIL-101, a chromium terephthalate metal organic framework (MOF). Formation of the metal core and of the SBU is key to MOF nucleation, the rate-limiting step in the synthesis process of many MOFs. A series of reactions that lead to the formation of the SBU of MIL-101 is proposed in this work. The highest barrier (∼35 kcal/mol) involves the formation of a dimetal-linker intermediate and high to low spin transition as a third Cr-linker moiety joins to form a three metal-linker group joined by a central oxygen. The terephthalate linkers play an important, key mechanistic role with the carboxylates first joining chromium atoms prior to the formation of bridging oxygens. Subsequent to metal core formation, stepwise linker addition reactions generate different assembly pathways due to structural isomers that are limited by the removal of water molecule...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.