Abstract

The utilization of phosphorus by algae in the low-phosphorus state has drawn wide concerns due to the high risk of forming algal blooms. The cyanobacteria Microcystis aeruginosa (M. aeruginosa) grew well under low-phosphorus condition by hydrolyzing dissolved organic phosphorus (DOP) to dissolved inorganic phosphorus (DIP) through alkaline phosphatase (AP). There was a negative correlation between DIP concentration and AP activity of algae. AP activity significantly increased at 0-3 d (p < 0.05), and reached the peak values of 43.06 and 49.11 King unit/gprot on day 5 for DIP (0.1 mg/L) and DOP (4.0 mg/L), respectively. The relative expression of phosphate transporter gene increased with decreasing phosphorus concentrations. The catalase activity under low-phosphorus condition increased significantly (p < 0.05) after one week, and was generally higher than 0.15 U/mgprot on day 14. Understanding the utilization efficiency and mechanism of DIP and DOP in the low-phosphorus state would help to inhibit the formation of algal blooms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call